-		- 1			
In	tro	d_1	101		
TTT	u o	uu	ac u	OIL	

Two copies

n copie

Discussion

Unbounded number of channel uses are required to see quantum capacity

T. Cubitt, D. Elkouss, W. Matthews, M. Ozols, D. Pérez-García, S. Strelchuk

University of Cambridge, Universidad Complutense de Madrid

Introduction	Two copies	n copies	Discussion
Motivation			

Does N have capacity?
 What is the capacity of N?

Classical Channel

- Mutual information
- Single use of the channel

Quantum Channel

- Coherent information
- Unbounded number of channel uses

Do we need to consider an unbounded number of channel uses to detect quantum capacity?

Introduction	Two copies	n copies	Discussion
Motivation			

Main result

For any n, there exist a channel N, for which the coherent information is zero for n copies of the channel, but has with positive capacity.

Introduction	Two copies	n copies	Discussion
Outline			

2 Construction of \mathcal{N} such that $Q^{(1)}(\mathcal{N}) = 0$ but $Q(\mathcal{N}) > 0$

3 Construction of \mathcal{N} such that $Q^{(n)}(\mathcal{N}) = 0$ but $Q(\mathcal{N}) > 0$

Introduction	Two copies	n copies	Discussion
Outline			

2 Construction of \mathbb{N} such that $Q^{(1)}(\mathbb{N}) = 0$ but $Q(\mathbb{N}) > 0$

3 Construction of \mathbb{N} such that $Q^{(n)}(\mathbb{N}) = 0$ but $Q(\mathbb{N}) > 0$

n copies

Quantum Channels 101

Isometric representation

$$\mathcal{N}(\rho) = tr_E(V\rho V^{\dagger})$$

 $\mathcal{N}^c(\rho) = tr_B(V\rho V^{\dagger})$

Channel-state duality

n copie

Quantum Communications

Definition

The capacity is the maximum rate at which arbitrarily faithful communication is possible.

Introduction	Iwo copies	n copies	Discussion
Quantum Ca	pacity		

• Coherent information (Nielsen-Schumacher '96):

 $I_{coh}(\mathcal{N}, \rho) = H(\mathcal{N}(\rho)) - H(\mathcal{N}_{c}(\rho))$

• Coherent information after *n*-uses of a channel:

$$Q^{(n)}(\mathbb{N}) = \frac{1}{n} \max_{\rho} I_{coh}(\mathbb{N}^{\otimes n}, \rho)$$

• **Quantum capacity of a channel** (Lloyd '97, Shor '02, Devetak '05) :

$$Q(\mathcal{N}) = \lim_{n \to \infty} Q^{(n)}(\mathcal{N})$$

• Superadditivity of the coherent information (DiVincenzo-Shor-Smolin '98):

 $Q(\mathcal{N}) > Q^{(1)}(\mathcal{N}) = 0$

Introduction	Two copies	n copies	Discussion
Other capacities			

• Classical capacity (Hastings '09):

 $C(\mathcal{N}) > C^{(1)}(\mathcal{N})$

• Private capacity (Smith-Renes-Smolin '08):

 $P(\mathcal{N}) > P^{(1)}(\mathcal{N})$

• Classical zero-error capacity of a classical channel (Shannon '56):

 $C_0(\mathcal{N}) > C_0^{(1)}(\mathcal{N})$

• Quantum zero-error capacity of a quantum channel (Shirokov '14):

$$\forall n \exists \mathcal{N}; Q_0^{(n)}(\mathcal{N}) = 0, Q_0(\mathcal{N}) > 0$$

Introduction	Two copies	n copies	Discussion
Outline			

1 Introduction

2 Construction of \mathcal{N} such that $Q^{(1)}(\mathcal{N}) = 0$ but $Q(\mathcal{N}) > 0$

3 Construction of \mathcal{N} such that $Q^{(n)}(\mathcal{N}) = 0$ but $Q(\mathcal{N}) > 0$

4 Discussion

Theorem (Smith-Yard '08)

There exist two zero-capacity channels $\mathcal{E}_{1/2}$, Γ *s.t.* $Q(\mathcal{E}_{1/2} \otimes \Gamma) > 0$.

'You appear to be blind in your left eye and blind in your right eye. Why you can see with both eyes is beyond me..." (Oppenheim '08)

Introduction	Two copies	n copies	Discussion
Component	channels		

Erasure channel

$$\begin{split} \mathcal{E}_p(\rho^A) &:= (1-p)\rho^B + p|e\rangle \langle e|^B \\ \text{if } p \geqslant 1/2 \; Q(\mathcal{E}_p) &= 0 \; \Big(\exists D; D \circ \mathcal{E}_p^c = \mathcal{E}_p \Big). \end{split}$$

 $\mathcal{E}_{1/2}$ is an erasure channel with p = 1/2.

PPT channel If the CJ of \mathbb{N} has PPT then $Q(\mathbb{N}) = 0$ (P. Horodecki-M. Horodecki-R. Horodecki '00).

Γ is a PPT channel with CJ close to a pbit.

Pbits	Introduction	Two copies	n copies	Discussion
	Pbits			

Definition

A bipartite **key** ab: $\phi^{ab} = |\phi\rangle\langle\phi|^{ab}, |\phi\rangle^{ab} := \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)^{ab}$; A **shield** AB (dim A = dim B) and state σ^{AB} ; A **pbit** is a state of the form

$$\gamma^{\mathsf{abAB}} := U\left(\phi^{\mathsf{ab}} \otimes \sigma^{\mathsf{AB}}
ight) U^{\dagger}$$

U is a *global* unitary of the form: $\sum_{i,j=0}^{1} |i\rangle \langle i|^{\mathsf{a}} \otimes |j\rangle \langle j|^{\mathsf{b}} \otimes U_{ij}^{\mathsf{AB}}$.

Properties

If we trace AB and Bob dephases locally: $\gamma^{ab} = \frac{1}{2} \sum_{i=0}^{1} |ii\rangle \langle ii|_{ab}$. If Bob gets A he can "untwist" with a *local* unitary: **ab** become maximally entangled.

Plan: Γ *distributes pbits,* $\mathcal{E}_{1/2}$ *is used to transmit the shield.*

Theorem (K. Horodecki-M. Horodecki-P. Horodecki-Oppenheim '09) There exist PPT states arbitrarily close to a perfect pbit.

Beginning with:

$$\rho^{\text{abAB}} = \frac{1}{2} \Big(|\varphi^+\rangle \langle \varphi^+|^{\text{ab}} \otimes \sigma^{+\text{AB}} + |\varphi^-\rangle \langle \varphi^-|^{\text{ab}} \otimes \sigma^{-\text{AB}} \Big)$$

obtain some $\tilde{\gamma}^{abAB}$:

- Is PPT.
- Is *\epsilon-close to* a perfect pbit.

Remark

The channel Γ with $\tilde{\gamma}^{abAB}$ as CJ has zero capacity.

Protocol

- Send one half of the maximally entangled state through Γ .
- Now Alice and Bob share a pbit (up to ε).
- Alice sends her part of the shield through $\mathcal{E}_{1/2}$.

Evaluate for pbit, by continuity the result holds up to $f(\epsilon)$.

Coherent information

- With probability $\frac{1}{2}$, Bob gets the shield and he can untwist the pbit.
- With probability $\frac{1}{2}$, the channel erases (they are left with $\tilde{\gamma}_{ab}$).
- This yields

$$Q^{(1)}(\mathcal{E}_{1/2}\otimes\Gamma) \geqslant \frac{1}{2} - f(\epsilon)$$

Introduction	Two copies	n copies	Discussion
Switch channels			

Direct sum channels (Fukuda-Wolf '07)

- The control input is measured in the computational basis
- The output of the measurement "chooses" the channel applied to the data input

Lemma (Fukuda-Wolf '07)

$$Q^{(1)}\left(\sum_{i} P_i \otimes \mathcal{N}_i\right) = \max_{i} Q^{(1)}(\mathcal{N}_i)$$

Introduction	Two copies	n copies	Discussion
Corollary:	\mathcal{N} such that $Q^{(1)}($	$\mathcal{N}) = 0, Q(\mathcal{N}) > 0$	

Channel \mathcal{N}

 Take N₁ as the PPT channel with CJ state arbitrarily close to a pbit (Γ)

• Take
$$\mathcal{N}_2 = \mathcal{E}_{1/2}$$

Proof

- Maximize coherent information of component channels.
- Clearly $Q^{(1)}(\mathcal{N}) = 0$.
- By taking N ⊗ N we have access to Γ ⊗ ε_{1/2}. Hence Q⁽²⁾(N) > 0.

Introduction	Two copies	n copies	Discussion
Outline			

1 Introduction

2 Construction of \mathcal{N} such that $Q^{(1)}(\mathcal{N}) = 0$ but $Q(\mathcal{N}) > 0$

3 Construction of \mathbb{N} such that $Q^{(n)}(\mathbb{N}) = 0$ but $Q(\mathbb{N}) > 0$

4 Discussion

Introduction	Two copies	n copies	Discussion
Plan			

Use a switch with two component channels one can share a PPT pbit the other an erasure channel to send the shield.

- "Converse": $Q^{(n)} = 0$
 - Make pbit creation *unreliable* ($Pr(fail) = \kappa$).
 - Boost the erasure probability of the erasure channel.
- "Achievable": Q > 0, via $Q^{(t+1)} > 0$ for some t + 1 > n:
 - Make the shield with *t* parts so that giving Bob any part of Alice's shield unlocks the entanglement in the key.
 - With the first use of channel (try to) establish this pbit between Alice and Bob. Send *t* pieces of the shield over *t* erasure channel uses.
 - Probability that at least one piece gets through: $1 p^t$.

Introduction	Two copies	n copies	Discussion
Channel			

- Take $\mathcal{N}_1 = \mathcal{E}_p$
- Take \mathcal{N}_2 as a noisy PPT-pbit channel $(\tilde{\Gamma}_{\kappa})$

where

$$\tilde{\Gamma}_{\kappa} := (1 - \kappa)\Gamma + \kappa |e\rangle \langle e|$$

Requirement: even if we trace out all but one of the subsystems of the shield the reduced state should be close to a pbit. Proof similar to (K. Horodecki-M. Horodecki-P. Horodecki-Oppenheim '09).

Introduction	Two copies	n copies	Discussion
"Converse"			

Lemma (Converse) If $\kappa \in (0, 1]$, for p large enough $Q^{(n)}(\mathcal{N}) = 0$.

Proof.

Restrict to
$$Q^{(1)}(\mathbb{N}_i)$$
. Let $I_l := I_{coh}\left(\widetilde{\Gamma}_{\kappa}^{\otimes l} \otimes \mathcal{E}_p^{\otimes (n-l)}, \rho\right)$

$$\begin{split} I_{l} &\leqslant \kappa^{l} p^{n-l}(-S(\rho_{l})) & (\text{all erase}) \\ &+ (1-\kappa^{l}) p^{n-l} I_{coh}(\Gamma^{\otimes l} \otimes \mathcal{E}_{1}^{\otimes n-l}, \rho_{l}) & (\text{all } \mathcal{E}_{p} \text{ erase}) \\ &+ (1-p^{n-l}) S(\rho_{l}) & (\text{other cases}) \end{split}$$

 $I_l \leq (-\kappa^l p^{n-l} + 1 - p^{n-l})S(\rho_l) \leq (1 - (1 + \kappa^n)p^n)S(\rho_l),$ We find that $I_l \leq 0$ if $p \geq (1 + \kappa^n)^{-1/n}$.

Introduction	Two copies	n copies	Discussion
"Achievability"			

Lemma (Achievability)

For $p \in (0, 1)$, $\kappa \in (0, 1/2)$, there exists a channel \mathbb{N} and $t \in \mathbb{N}$ such that $Q^{(t+1)}(\mathbb{N}) > 0$.

Protocol: Choose $\tilde{\Gamma}_{\kappa}$ for 1st use and (try) create pbit, choose \mathcal{E}_p for uses $2 \dots t + 1$ and send Alice's *t* parts of the shield.

$$\begin{split} (t+1)Q^{(t+1)}(\mathcal{N}) &\geq I_{coh}(\tilde{\Gamma} \otimes \mathcal{E}_{p}^{\otimes t}, \rho) \\ &\geq \kappa I_{coh}(\mathcal{E}_{1} \otimes \mathcal{E}_{p}^{\otimes t}, \rho) & (\text{no pbit}) \\ &+ (1-\kappa)p^{t}I_{coh}(\Gamma \otimes \mathcal{E}_{1}^{t}, \rho) & (\text{got a pbit but no shield}) \\ &+ (1-\kappa)(1-p^{t})I_{coh}(\Gamma \otimes I \otimes \mathcal{E}_{1}^{t-1}, \rho) & (\text{got a pbit + shield}) \\ &\geq (1-\kappa)(1-p^{t}-f(\varepsilon))-\kappa \end{split}$$

$\forall n, \exists \mathbb{N} \text{ such that } Q^{(n)}(\mathbb{N}) = 0 \text{ but } Q(\mathbb{N}) > 0$

- Given *n*, choose $\kappa = 1/3$ and $p = (1 + \kappa^n)^{-1/n}$ to comply with "Converse"
- Since *κ*, *p* are in the range of "Achievability" we can construct N.

Introduction	Two copies	n copies	Discussion
Outline			

1 Introduction

2 Construction of \mathbb{N} such that $Q^{(1)}(\mathbb{N}) = 0$ but $Q(\mathbb{N}) > 0$

3 Construction of \mathbb{N} such that $Q^{(n)}(\mathbb{N}) = 0$ but $Q(\mathbb{N}) > 0$

Introduction	Two copies	n copies	Discussion
Discussion			

Open questions

- $(t \gg n)$ Identify *m* such that $Q^{(m)}(\mathcal{N}) = 0$ but $Q^{(m+1)}(\mathcal{N}) > 0$
- Same result with constant dimension?

Summary

Does N have capacity?
 What is the capacity of N?